Prediction of Unsteady Transonic Aerodynamics, Phase I

Completed Technology Project (2011 - 2011)

Project Introduction

An accurate prediction of aero-elastic effects depends on an accurate prediction of the unsteady aerodynamic forces. Perhaps the most difficult speed regime is transonic where the motion of the shock wave and its interaction with the boundary layer are dominant factors. In spite of over 40 years research into the computation of unsteady transonic aerodynamics there still appear to be areas where available technology is inadequate. A research axiom is that if a particular viewpoint fails to resolve an issue then the problem should be viewed differently. The research proposed here is to reexamine some issues in unsteady transonic aerodynamics using some recent theoretical developments. All aspects of unsteady transonic flow, including limit cycles and control strategies will be considered.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
AYCN LLC	Lead Organization	Industry	Los Altos, California
Langley Research Center(LaRC)	Supporting Organization	NASA Center	Hampton, Virginia

Prediction of Unsteady Transonic Aerodynamics, Phase I

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	
Organizational Responsibility	2
Project Management	
Technology Maturity (TRL)	
Technology Areas	3
Target Destinations	

Small Business Innovation Research/Small Business Tech Transfer

Prediction of Unsteady Transonic Aerodynamics, Phase I

Completed Technology Project (2011 - 2011)

Primary U.S. Work Locations		
California	Virginia	

Project Transitions

0

February 2011: Project Start

August 2011: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138423)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

AYCN LLC

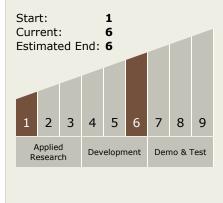
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

David Nixon

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Prediction of Unsteady Transonic Aerodynamics, Phase I

Completed Technology Project (2011 - 2011)

Technology Areas

Primary:

TX15 Flight Vehicle Systems
TX15.1 Aerosciences
TX15.1.3 Aeroelasticity

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

